1. Gelman S. The pathophysiology of aortic cross-clamping and unclamping. Anesthesiology 1995; 82: 1026-60.
3. Marcantonio ER, Goldman L, Mangione CM, Ludwig LE, Muraca B, Haslauer CM, et al. A clinical prediction rule for delirium after elective noncardiac surgery. JAMA 1994; 271: 134-9.
4. Visser L, Prent A, van der Laan MJ, van Leeuwen BL, Izaks GJ, Zeebregts CJ, et al. Predicting postoperative delirium after vascular surgical procedures. J Vasc Surg 2015; 62: 183-9.
5. Raats JW, Steunenberg SL, de Lange DC, van der Laan L. Risk factors of post-operative delirium after elective vascular surgery in the elderly: a systematic review. Int J Surg 2016; 35: 1-6.
6. Benoit AG, Campbell BI, Tanner JR, Staley JD, Wallbridge HR, Biehl DR, et al. Risk factors and prevalence of perioperative cognitive dysfunction in abdominal aneurysm patients. J Vasc Surg 2005; 42: 884-90.
7. Bryson GL, Wyand A, Wozny D, Rees L, Taljaard M, Nathan H. A prospective cohort study evaluating associations among delirium, postoperative cognitive dysfunction, and apolipoprotein E genotype following open aortic repair. Can J Anaesth 2011; 58: 246-55.
10. Dasgupta M, Dumbrell AC. Preoperative risk assessment for delirium after noncardiac surgery: a systematic review. J Am Geriatr Soc 2006; 54: 1578-89.
12. Evered LA, Silbert BS. Postoperative cognitive dysfunction and noncardiac surgery. Anesth Analg 2018; 127: 496-505.
13. Yokota H, Ogawa S, Kurokawa A, Yamamoto Y. Regional cerebral blood flow in delirium patients. Psychiatry Clin Neurosci 2003; 57: 337-9.
14. Goettel N, Burkhart CS, Rossi A, Cabella BC, Berres M, Monsch AU, et al. Associations between impaired cerebral blood flow autoregulation, cerebral oxygenation, and biomarkers of brain injury and postoperative cognitive dysfunction in elderly patients after major noncardiac surgery. Anesth Analg 2017; 124: 934-42.
15. Toth P, Tarantini S, Csiszar A, Ungvari Z. Functional vascular contributions to cognitive impairment and dementia: mechanisms and consequences of cerebral autoregulatory dysfunction, endothelial impairment, and neurovascular uncoupling in aging. Am J Physiol Heart Circ Physiol 2017; 312: H1-20.
16. Uchida M, Iida H, Iida M, Dohi S. Changes in cerebral microcirculation during and after abdominal aortic cross-clamping in rabbits: the role of thromboxane A2 receptor. Anesth Analg 2003; 96: 651-6.
17. Uchida M, Iida H, Iida M, Kumazawa M, Sumi K, Takenaka M, et al. Both milrinone and colforsin daropate attenuate the sustained pial arteriolar constriction seen after unclamping of an abdominal aortic cross-clamp in rabbits. Anesth Analg 2005; 101: 9-16.
18. Kumazawa M, Iida H, Uchida M, Iida M, Takenaka M, Dohi S. The comparative effects of intravenous nicardipine and prostaglandin E1 on the cerebral pial arteriolar constriction seen after unclamping of an aortic cross-clamp in rabbits. Anesth Analg 2007; 104: 659-65.
19. Lopez MG, Hughes CG, DeMatteo A, O'Neal JB, McNeil JB, Shotwell MS, et al. Intraoperative oxidative damage and delirium after cardiac surgery. Anesthesiology 2020; 132: 551-61.
20. Zammert M, Gelman S. The pathophysiology of aortic cross-clamping. Best Pract Res Clin Anaesthesiol 2016; 30: 257-69.
21. Thompson MM, Nasim A, Sayers RD, Thompson J, Smith G, Lunec J, et al. Oxygen free radical and cytokine generation during endovascular and conventional aneurysm repair. Eur J Vasc Endovasc Surg 1996; 12: 70-5.
22. Aivatidi C, Vourliotakis G, Georgopoulos S, Sigala F, Bastounis E, Papalambros E. Oxidative stress during abdominal aortic aneurysm repair--biomarkers and antioxidant's protective effect: a review. Eur Rev Med Pharmacol Sci 2011; 15: 245-52.
23. Skvarc DR, Berk M, Byrne LK, Dean OM, Dodd S, Lewis M, et al. Post-Operative Cognitive Dysfunction: an exploration of the inflammatory hypothesis and novel therapies. Neurosci Biobehav Rev 2018; 84: 116-33.
24. Grochowski C, Litak J, Kamieniak P, Maciejewski R. Oxidative stress in cerebral small vessel disease. Role of reactive species. Free Radic Res 2018; 52: 1-13.
26. Watanabe T, Morita I, Nishi H, Murota S. Preventive effect of MCI-186 on 15-HPETE induced vascular endothelial cell injury in vitro. Prostaglandins Leukot Essent Fatty Acids 1988; 33: 81-7.
27. Watanabe T, Yuki S, Egawa M, Nishi H. Protective effects of MCI-186 on cerebral ischemia: possible involvement of free radical scavenging and antioxidant actions. J Pharmacol Exp Ther 1994; 268: 1597-604.
28. Ogasawara K, Yamadate K, Kobayashi M, Endo H, Fukuda T, Yoshida K, et al. Effects of the free radical scavenger, edaravone, on the development of postoperative cognitive impairment in patients undergoing carotid endarterectomy. Surg Neurol 2005; 64: 309-13.
29. Zhou Y, Wu X, Ye L, Bai Y, Zhang H, Xuan Z, et al. Edaravone at high concentrations attenuates cognitive dysfunctions induced by abdominal surgery under general anesthesia in aged mice. Metab Brain Dis 2020; 35: 373-83.
30. Papalambros E, Sigala F, Georgopoulos S, Paraskevas KI, Andreadou I, Menenakos X, et al. Malondialdehyde as an indicator of oxidative stress during abdominal aortic aneurysm repair. Angiology 2007; 58: 477-82.
32. Montezano AC, Touyz RM. Molecular mechanisms of hypertension--reactive oxygen species and antioxidants: a basic science update for the clinician. Can J Cardiol 2012; 28: 288-95.
33. Montezano AC, Touyz RM. Reactive oxygen species and endothelial function--role of nitric oxide synthase uncoupling and Nox family nicotinamide adenine dinucleotide phosphate oxidases. Basic Clin Pharmacol Toxicol 2012; 110: 87-94.
34. Furchgott RF, Zawadzki JV. The obligatory role of endothelial cells in the relaxation of arterial smooth muscle by acetylcholine. Nature 1980; 288: 373-6.
35. Tosaka M, Hashiba Y, Saito N, Imai H, Shimizu T, Sasaki T. Contractile responses to reactive oxygen species in the canine basilar artery in vitro: selective inhibitory effect of MCI-186, a new hydroxyl radical scavenger. Acta Neurochir (Wien) 2002; 144: 1305-10.
36. Mathieson MA, Dunham BM, Huval WV, Lelcuk S, Stemp LI, Valeri CR, et al. Ischemia of the limb stimulates thromboxane production and myocardial depression. Surg Gynecol Obstet 1983; 157: 500-4.
38. Dovgan PS, Edwards JD, Rowley JM, Agrawal DK, Adrian TE. Effects of ischaemia and reperfusion on vasoactive neuropeptide levels in the canine infrarenal aortic revascularization model. Cardiovasc Surg 1996; 4: 470-5.
39. Fukuda S, Taga K, Tanaka T, Sakuma K, Fujiwara N, Shimoji K, et al. Relationship between tissue ischemia and venous endothelin-1 during abdominal aortic aneurysm surgery. J Cardiothorac Vasc Anesth 1995; 9: 510-4.
40. Cabie A, Farkas JC, Fitting C, Laurian C, Cormier JM, Carlet J, et al. High levels of portal TNF-alpha during abdominal aortic surgery in man. Cytokine 1993; 5: 448-53.
41. Vasdekis SN, Argentou M, Kakisis JD, Bossios A, Gourgiotis D, Karanikolas M, et al. A global assessment of the inflammatory response elicited upon open abdominal aortic aneurysm repair. Vasc Endovascular Surg 2008; 42: 47-53.
43. Kamiya S, Shirahase H, Nakamura S, Kanda M, Matsui H, Yoshimi A, et al. A novel series of thromboxane A2 synthetase inhibitors with free radical scavenging and anti-peroxidative activities. Chem Pharm Bull (Tokyo) 2001; 49: 563-71.
44. Sedeek MH, Llinas MT, Drummond H, Fortepiani L, Abram SR, Alexander BT, et al. Role of reactive oxygen species in endothelin-induced hypertension. Hypertension 2003; 42: 806-10.
45. Onimaru S, Nakamura K, Kariyazono H, Ikeda R, Ueno T, Fukumoto Y, et al. Inhibitory effects of edaravone on the production of tumor necrosis factor-alpha in the isolated heart undergoing ischemia and reperfusion. Heart Vessels 2006; 21: 108-15.
46. Ishii H, Petrenko AB, Sasaki M, Satoh Y, Kamiya Y, Tobita T, et al. Free radical scavenger edaravone produces robust neuroprotection in a rat model of spinal cord injury. Brain Res 2018; 1682: 24-35.
47. Ohta S, Iwashita Y, Kakinoki R, Noguchi T, Nakamura T. Effects of continuous intravenous infusion of MCI-186 on functional recovery after spinal cord injury in rats. J Neurotrauma 2011; 28: 289-98.
48. Yamashita T, Shoge M, Oda E, Yamamoto Y, Giddings JC, Kashiwagi S, et al. The free-radical scavenger, edaravone, augments NO release from vascular cells and platelets after laser-induced, acute endothelial injury in vivo. Platelets 2006; 17: 201-6.